Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517938

RESUMO

Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.


Assuntos
AMP Cíclico , Nucleosídeos de Purina , AMP Cíclico/metabolismo , Nucleosídeos/farmacologia , Regulação Alostérica , Nucleotídeos Cíclicos , Guanosina , Adenosina
2.
PLoS Pathog ; 20(3): e1012073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38551993

RESUMO

Parasitic protozoa of the genus Leishmania cycle between the phagolysosome of mammalian macrophages, where they reside as rounded intracellular amastigotes, and the midgut of female sand flies, which they colonize as elongated extracellular promastigotes. Previous studies indicated that protein kinase A (PKA) plays an important role in the initial steps of promastigote differentiation into amastigotes. Here, we describe a novel regulatory subunit of PKA (which we have named PKAR3) that is unique to Leishmania and most (but not all) other Kinetoplastidae. PKAR3 is localized to subpellicular microtubules (SPMT) in the cell cortex, where it recruits a specific catalytic subunit (PKAC3). Promastigotes of pkar3 or pkac3 null mutants lose their elongated shape and become rounded but remain flagellated. Truncation of an N-terminal formin homology (FH)-like domain of PKAR3 results in its detachment from the SPMT, also leading to rounded promastigotes. Thus, the tethering of PKAC3 via PKAR3 at the cell cortex is essential for maintenance of the elongated shape of promastigotes. This role of PKAR3 is reminiscent of PKARIß and PKARIIß binding to microtubules of mammalian neurons, which is essential for the elongation of dendrites and axons, respectively. Interestingly, PKAR3 binds nucleoside analogs, but not cAMP, with a high affinity similar to the PKAR1 isoform of Trypanosoma. We propose that these early-diverged protists have re-purposed PKA for a novel signaling pathway that spatiotemporally controls microtubule remodeling and cell shape.


Assuntos
Leishmania , Animais , Humanos , Feminino , Leishmania/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Macrófagos/metabolismo , Diferenciação Celular/fisiologia , Morfogênese , Mamíferos
3.
Front Cell Infect Microbiol ; 13: 1204707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475965

RESUMO

Cyclic AMP signalling in trypanosomes differs from most eukaryotes due to absence of known cAMP effectors and cAMP independence of PKA. We have previously identified four genes from a genome-wide RNAi screen for resistance to the cAMP phosphodiesterase (PDE) inhibitor NPD-001. The genes were named cAMP Response Protein (CARP) 1 through 4. Here, we report an additional six CARP candidate genes from the original sample, after deep sequencing of the RNA interference target pool retrieved after NPD-001 selection (RIT-seq). The resistance phenotypes were confirmed by individual RNAi knockdown. Highest level of resistance to NPD-001, approximately 17-fold, was seen for knockdown of CARP7 (Tb927.7.4510). CARP1 and CARP11 contain predicted cyclic AMP binding domains and bind cAMP as evidenced by capture and competition on immobilised cAMP. CARP orthologues are strongly enriched in kinetoplastid species, and CARP3 and CARP11 are unique to Trypanosoma. Localization data and/or domain architecture of all CARPs predict association with the T. brucei flagellum. This suggests a crucial role of cAMP in flagellar function, in line with the cell division phenotype caused by high cAMP and the known role of the flagellum for cytokinesis. The CARP collection is a resource for discovery of unusual cAMP pathways and flagellar biology.


Assuntos
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Interferência de RNA , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Flagelos/metabolismo
4.
Nat Commun ; 13(1): 5445, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114198

RESUMO

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico , Trypanosoma brucei brucei/metabolismo , Moscas Tsé-Tsé/parasitologia
5.
J Biol Chem ; 296: 100548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33741344

RESUMO

The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.


Assuntos
Glucose/metabolismo , Recombinação Homóloga , Microcorpos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Trypanosoma brucei brucei/metabolismo , Células Cultivadas , Flavinas/metabolismo , Succinato Desidrogenase/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
6.
FEBS J ; 288(18): 5430-5445, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33755328

RESUMO

A subset of flavoproteins has a covalently attached flavin prosthetic group enzymatically attached via phosphoester bonding. In prokaryotes, this is catalysed by alternative pyrimidine biosynthesis E (ApbE) flavin transferases. ApbE-like domains are present in few eukaryotic taxa, for example the N-terminal domain of fumarate reductase (FRD) of Trypanosoma, a parasitic protist known as a tropical pathogen causing African sleeping sickness. We use the versatile reverse genetic tools available for Trypanosoma to investigate the flavinylation of glycosomal FRD (FRDg) in vivo in the physiological and organellar context. Using direct in-gel fluorescence detection of covalently attached flavin as proxy for activity, we show that the ApbE-like domain of FRDg has flavin transferase activity in vivo. The ApbE domain is preceded by a consensus flavinylation target motif at the extreme N terminus of FRDg, and serine 9 in this motif is essential as flavin acceptor. The preferred mode of flavinylation in the glycosome was addressed by stoichiometric expression and comparison of native and catalytically inactive ApbE domains. In addition to the trans-flavinylation activity, the ApbE domain catalyses the intramolecular cis-flavinylation with at least fivefold higher efficiency. We discuss how the higher efficiency due to unusual fusion of the ApbE domain to its substrate protein FRD may provide a selective advantage by faster FRD biogenesis during rapid metabolic adaptation of trypanosomes. The first 37 amino acids of FRDg, including the consensus motif, are sufficient as flavinylation target upon fusion to other proteins. We propose FRDg(1-37) as 4-kDa heat-stable, detergent-resistant fluorescent protein tag and suggest its use as a new tool to study glycosomal protein import.


Assuntos
Flavoproteínas/genética , Succinato Desidrogenase/genética , Transferases/genética , Trypanosoma brucei brucei/genética , Dinitrocresóis/metabolismo , Flavoproteínas/química , Humanos , Domínios Proteicos/genética , Transporte Proteico/genética , Pirimidinas/biossíntese , Succinato Desidrogenase/química , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia , Triptofano/análogos & derivados , Triptofano/genética
7.
PLoS Pathog ; 17(3): e1009204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33647053

RESUMO

Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.


Assuntos
Glucose/metabolismo , Prolina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Moscas Tsé-Tsé/efeitos dos fármacos , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Insetos Vetores/parasitologia , Oxirredução/efeitos dos fármacos , Prolina/metabolismo , Interferência de RNA/fisiologia , Trypanosoma/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Moscas Tsé-Tsé/parasitologia
8.
Biochim Biophys Acta Bioenerg ; 1861(11): 148283, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763239

RESUMO

Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro-reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF.


Assuntos
Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzima A-Transferases/metabolismo , Mitocôndrias/metabolismo , Succinato-CoA Ligases/metabolismo , Trypanosoma brucei brucei/metabolismo , Acil Coenzima A/metabolismo , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Mutação , Fosforilação Oxidativa , Succinato-CoA Ligases/química , Succinato-CoA Ligases/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
9.
Methods Mol Biol ; 2116: 23-38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221911

RESUMO

Cultivation of pleomorphic Trypanosoma brucei strains was introduced in 1996 when matrix dependence of growth of natural isolates was recognized. Semisolid agarose or liquid methylcellulose are currently used and here we provide optimized protocols for these culture methods and for transfection of pleomorphic strains. Although more laborious than standard liquid culture, culture of native pleomorphic strains is important for a number of research questions including differentiation, virulence, tissue tropism, and regulated metabolism. Some subclones of pleomorphic strains have acquired matrix independence upon passage in culture but maintained a pleomorphic phenotype. It appears that matrix dependence and pleomorphism are not tightly linked traits, yet phenotypes have to be verified before choosing one of these subclones for given experiments. Based on direct comparisons, we give recommendations for pleomorphic strain selection and culture conditions that guarantee truly pleomorphic and differentiation competent Trypanosoma brucei.


Assuntos
Estágios do Ciclo de Vida/genética , Transfecção/métodos , Trypanosoma brucei brucei/genética , Meios de Cultura , Regulação da Expressão Gênica no Desenvolvimento , Trypanosoma brucei brucei/patogenicidade
10.
Nat Commun ; 10(1): 5770, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852899

RESUMO

Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions.


Assuntos
Autofagia/imunologia , Proteína Beclina-1/metabolismo , Infecções por Coronavirus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Proteínas Quinases Associadas a Fase S/metabolismo , Animais , Autofagia/efeitos dos fármacos , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Proteólise/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/imunologia , Células Vero
11.
Sci Rep ; 9(1): 10131, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300661

RESUMO

Assembling composite DNA modules from custom DNA parts has become routine due to recent technological breakthroughs such as Golden Gate modular cloning. Using Golden Gate, one can efficiently assemble custom transcription units and piece units together to generate higher-order assemblies. Although Golden Gate cloning systems have been developed to assemble DNA plasmids required for experimental work in model species, they are not typically applicable to organisms from other kingdoms. Consequently, a typical molecular biology laboratory working across kingdoms must use multiple cloning strategies to assemble DNA constructs for experimental assays. To simplify the DNA assembly process, we developed a multi-kingdom (MK) Golden Gate assembly platform for experimental work in species from the kingdoms Fungi, Eubacteria, Protista, Plantae, and Animalia. Plasmid backbone and part overhangs are consistent across the platform, saving both time and resources in the laboratory. We demonstrate the functionality of the system by performing a variety of experiments across kingdoms including genome editing, fluorescence microscopy, and protein interaction assays. The versatile MK system therefore streamlines the assembly of modular DNA constructs for biological assays across a range of model organisms.


Assuntos
Clonagem Molecular/métodos , Edição de Genes , Proteínas Recombinantes/genética , Animais , Bactérias/genética , Feminino , Humanos , Oócitos/fisiologia , Organismos Geneticamente Modificados , Plantas/genética , Plasmídeos/genética , Proteínas/análise , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Transgenes , Trypanosoma/genética , Xenopus laevis , Leveduras/genética
12.
Nat Commun ; 10(1): 1421, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926779

RESUMO

Protein kinase A (PKA), the main effector of cAMP in eukaryotes, is a paradigm for the mechanisms of ligand-dependent and allosteric regulation in signalling. Here we report the orthologous but cAMP-independent PKA of the protozoan Trypanosoma and identify 7-deaza-nucleosides as potent activators (EC50 ≥ 6.5 nM) and high affinity ligands (KD ≥ 8 nM). A co-crystal structure of trypanosome PKA with 7-cyano-7-deazainosine and molecular docking show how substitution of key amino acids in both CNB domains of the regulatory subunit and its unique C-terminal αD helix account for this ligand swap between trypanosome PKA and canonical cAMP-dependent PKAs. We propose nucleoside-related endogenous activators of Trypanosoma brucei PKA (TbPKA). The existence of eukaryotic CNB domains not associated with binding of cyclic nucleotides suggests that orphan CNB domains in other eukaryotes may bind undiscovered signalling molecules. Phosphoproteome analysis validates 7-cyano-7-deazainosine as powerful cell-permeable inducer to explore cAMP-independent PKA signalling in medically important neglected pathogens.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativadores de Enzimas/farmacologia , Nucleosídeos/análogos & derivados , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Dipiridamol/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativadores de Enzimas/química , Holoenzimas/metabolismo , Leishmania/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Trypanosoma brucei brucei/efeitos dos fármacos , Tubercidina/farmacologia
13.
PLoS Pathog ; 14(12): e1007502, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30557412

RESUMO

In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.


Assuntos
Gluconeogênese/fisiologia , Trypanosoma brucei brucei/metabolismo , Moscas Tsé-Tsé/parasitologia , Animais , Vetores de Doenças , Tripanossomíase Africana
14.
Protein Expr Purif ; 138: 56-62, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28642005

RESUMO

Isocitrate dehydrogenases (IDHs) are metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate. Depending on the electron acceptor and subcellular localization, these enzymes are classified as NADP+-dependent IDH1 in the cytosol or peroxisomes, NADP+-dependent IDH2 and NAD+-dependent IDH3 in mitochondria. Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness in humans and Nagana disease in animals. Here, for the first time, a putative glycosomal T. brucei type 1 IDH (TbIDH1) was expressed in Escherichia coli and purified for crystallographic study. Surprisingly, the putative NADP+-dependent TbIDH1 has higher activity with NAD+ compared with NADP+ as electron acceptor, a unique characteristic among known eukaryotic IDHs which encouraged us to crystallize TbIDH1 for future biochemical and structural studies. Methods of expression and purification of large amounts of recombinant TbIDH1 with improved solubility to facilitate protein crystallization are presented.


Assuntos
Isocitrato Desidrogenase/genética , NADP/metabolismo , NAD/metabolismo , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isocitrato Desidrogenase/isolamento & purificação , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Peso Molecular , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Trypanosoma brucei brucei/enzimologia
15.
PLoS Pathog ; 12(2): e1005439, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26910529

RESUMO

Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.


Assuntos
Proteoma/genética , Proteômica , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Cromatina/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Estágios do Ciclo de Vida/genética , Proteômica/métodos , Trypanosoma brucei brucei/genética
16.
Int J Parasitol ; 46(2): 75-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26460237

RESUMO

Parasitic protozoa of the genus Leishmania are obligatory intracellular parasites that cycle between the phagolysosome of mammalian macrophages, where they proliferate as intracellular amastigotes, and the midgut of female sand flies, where they proliferate as extracellular promastigotes. Shifting between the two environments induces signaling pathway-mediated developmental processes that enable adaptation to both host and vector. Developmentally regulated expression and phosphorylation of protein kinase A subunits in Leishmania and in Trypanosoma brucei point to an involvement of protein kinase A in parasite development. To assess this hypothesis in Leishmania donovani, we determined proteome-wide changes in phosphorylation of the conserved protein kinase A phosphorylation motifs RXXS and RXXT, using a phospho-specific antibody. Rapid dephosphorylation of these motifs was observed upon initiation of promastigote to amastigote differentiation in culture. No phosphorylated sites were detected in axenic amastigotes. To analyse the kinetics of (re)phosphorylation during axenic reverse differentiation from L. donovani amastigotes to promastigotes, we first established a map of this process with morphological and molecular markers. Upon initiation, the parasites rested for 6-12 h before proliferation of an asynchronous population resumed. After early changes in cell shape, the major changes in molecular marker expression and flagella biogenesis occurred between 24 and 33 h after initiation. RXXS/T re-phosphorylation and expression of the regulatory subunit PKAR1 correlated with promastigote maturation, indicating a promastigote-specific function of protein kinase A signaling. This is supported by the localization of PKAR1 to the flagellum, an organelle reduced to a remnant in amastigote forms. We conclude that a significant increase in protein kinase A-mediated phosphorylation is part of the ordered changes that characterise the amastigote to promastigote differentiation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Leishmania donovani/metabolismo , Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Animais , Flagelos/metabolismo , Leishmania donovani/citologia , Leishmania donovani/enzimologia , Fosforilação , Proteoma
17.
Nucleic Acids Res ; 43(Database issue): D637-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300491

RESUMO

The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.


Assuntos
Bases de Dados de Compostos Químicos , Trypanosoma brucei brucei/metabolismo , Mineração de Dados , Internet , Redes e Vias Metabólicas , Proteômica , Trypanosoma brucei brucei/genética
18.
PLoS One ; 9(12): e114628, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493940

RESUMO

Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. ß-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.


Assuntos
Triglicerídeos/metabolismo , Trypanosoma brucei brucei/metabolismo , Southern Blotting , Citometria de Fluxo , Genes de Protozoários/genética , Genes de Protozoários/fisiologia , Metabolismo dos Lipídeos , Microscopia Confocal , Microscopia de Fluorescência , Ácido Oleico/metabolismo , Filogenia , Trypanosoma brucei brucei/genética
19.
Antimicrob Agents Chemother ; 57(10): 4882-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877697

RESUMO

One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development.


Assuntos
AMP Cíclico/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Western Blotting , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Trypanosoma brucei brucei/genética
20.
J Biol Chem ; 288(25): 18494-505, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23665470

RESUMO

All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/(RNAi)PGI double mutant when compared with the single mutants, and (iii) the (13)C enrichment of glycolytic and PPP intermediates from cells incubated with [U-(13)C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host.


Assuntos
Glucose/metabolismo , Malato Desidrogenase/metabolismo , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Trypanosoma brucei brucei/metabolismo , Animais , Western Blotting , Células Cultivadas , Citosol/metabolismo , Desidroepiandrosterona/farmacologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Gluconeogênese/fisiologia , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Malato Desidrogenase/genética , Espectrometria de Massas , Via de Pentose Fosfato/genética , Interferência de RNA , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Moscas Tsé-Tsé/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...